Radiative Fluxes in NCEP Operational Global Ensemble Forecasts

S-K Yang
Alvin J. Miller
Y. Zhu
27th CERES Science Team Meeting
GFDL, Princeton, NJ
9/17-19/02,

A SEAMLESS SUITE OF PRODUCTS

The Òseamless suiteÓ describes a set of related products which are integrated and consistent throughout time and space, as well as across forecast application and domain.

CPC Mandate

- Improve Sub-Seasonal forecasts (wk2months)
 - Demands from the public for planning and managements
 - Statistical methods
 - Dynamical forecasts
 - Transition from "initial condition" problem to "boundary forcing" problem.

CPC Long Lead Forecasts

At and beyond 3 days lead time, the direct model output from the ensemble forecasts offers more value than that from the higher resolution control forecast.

WOB US, TOTH AND ZHU: EVALUATION OF PROBABILISTIC FORECASTS ECONOMIC VALUE OF FORECASTS

Given a particular forecast, a user either does or does not take action (eg, protects its crop against frost) Mylne & Harrison, 1999

Use 10 climatologically equally likely bins to define events

<u>Hi–res control forecast:</u> If MRF control falls in a given climate bin, forecast is YES and NO otherwise

Lo-res ensemble forecast: Probabilities converted to a categorical fcst given the probability exceeds a certain threshold. Eg., all 30% or higher probabilities count as YES. Among different threshold probabilities one can select the one that results in largest economic value.

Results: For majority of users ensemble is more useful

Question: Is it because MRF is dichotomous, while ensemble provides full probability distribution?

NCEP Operational global ensemble forecasts

- 1) Short-to-Medium range prediction: help sampling the uncertainty in initial conditions.
- 2) Two runs per day at 00Z and 12Z T126 up to 3 _ days -> T62 out to 16th day

2) Seasonal Forecast: Samples the range the range of outcomes of the seasonal mean atmospheric states

16 members coupled model runs to forecast SST

Remove SST biases-> SST anomaly + observational climatology.

20 members AGCM runs based on mean SST forecasts.

Forecast Configurations

Initial conditions for ensemble members

Seasonal Forecast

BRIDGING THE GAP BETWEEN WEATHER AND CLIMATE

CURRENT NWS PRACTICE

- 2) "CLIMATE" ENSEMBLE:
 - a) 12-months coupled ocean-atm fcsts
 - b) Average the SST fcsts

c) Run AGCM ensemble forced by average SST fcst

STRENCTH:

Ensemble approach used both for coupled and AGCM model fcsts for enhancing (weak) signal

SHORTCOMINGS:

- a) Coupled ensemble (lagged fcst) perturbations not optimal
- b) Uncertainty information related to SST fcst is discarded
- Initial condition information from atmosphere not used

Predictability and forecast Skill

Relative measure of predictability (colors) for ensemble mean forecast (contours) of 500 hPa height ini: 2002090400 valid: 2002090500 fost: 24 hours

Degradation of Predictability

Ensemble forecasts Valid at 090412

T126 ensemble forecast F6-84hr

T62 extended ensemble forecast F108~384 hr

Spread of OLR ensemble members

Summary

- Ensemble forecasts provide information of predictability, very
 valuable for NWP, less so for climate runs. In general, the skill of the
 ensemble mean is higher than the single control run.
- Ensemble forecasts don't resolve model biases. Spread of the members shows the degree of agreement among members, not the degree of confidence on predictability.
- OLR spread is larger than height fields, could provide additional weather conditions.
- Need to examine surface fluxes for climate ensemble forecast runs.
 Model forecasts drift more.